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48 4. Rotation-Vibration Spectra

in which the molecule is a symmetric top with two equal moments of inertia. As an
example, Fig. 20 shows qualitatively how the three principal moments of inertia of
a bent AB, molecule depend on the bond
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Fig. 20. Dependence of the principal moments of inertia I, ly, and I, of an ABj molecule on
the bond angle Z ol = internuclear distance.

angle 2a it shows that there are two regions around a = 0° and 2a = 180° where
the molecule approximates to an prolate symmetric top and a region around 2a,,
[tane, = { m,/(m, + 2mpg)] where it approximates to an oblate symmetric top.

5. Electronic Band Spectra of Diatomic Molecules

As was mentioned in Chapter 2, band spectra in the visible and UV regions are
assigned to transitions between different electronic states of a molecule. When
interaction between the three forms of motion is disregarded, then according to
equation (5c) the energy of an electronic transition is

AE = (V' = V™) + (Bjp, = Ejpr) + (Broe — Egor) (69)

[the quantity E, in equation (5c) is identical with V(R,) in equation (25)].
Expressed in wave numbers, this energy becomes

AE
" he

M) (T’e — T,es) + G, (vs) —_ G” (V”) + F, (J,) — F” (J”)

(70)
= Ve t Vyibr t Prot
The electronic terms T’, and T}, are the energies of the potential minima of the two

electronic states between which the transition takes place, i.e.

T,
T

V’ (R})/he 1)
V” (R?)/he

The vibrational and rotational terms are then built up on these purely electronic
energies in accordance with equation (70); this is illustrated in Figs. 21 and 22.
The rotational and vibrational terms for each of the two electromic states are again
given by equation (47). Therefore the vibrational and rotational structure of an
electronic transition is similar to that in a rotation-vibration spectrum, with the
important difference that the rotational constants B, and B’ and the vibrational
constants w’, and w, etc. are now characteristic of different electronic states.
More precisely,

B,=B-a, (v + ),

(72)
B} =B, -a7 (v* + d).

Whereas the rotational constants of the upper and lower states in the rotation-

vibration spectrum differ only in having different values for v’ and v”, it is now

Ppossible, since B, #B”, and a’, #a”,, that B’, > B”_ even though v’ > v”.

v
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Fig. 21. Fig. 22.

Fig. 21. Potential energy curves and characteristic quantities for an electronic transition in a
diatomic molecule AB. T, = electronic terms, D¢ = dissociation energies, Re = equilibrium
distances, R = internuclear distances.

Fig. 22. Rotational and vibrational terms for a transition between two electronic states A and B.

5.1. Vibrational structure of electronic transitions

The totality of the lines in an electronic transition is built on a very complicated
pattern. It is therefore convenient to examine the coarse structure first, taking into
account only the rotationless states; this means that each band is replaced by its
zero line. According to equations (47) and (70), this vibrational coarse structure is
described by

o O R % | & S E A oy

(73)
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Uoo + [(A);V, — w V’2] - [w” » wn ”V”Z]
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where
w’ w’x’ w” w”x”
v =,,+(—e— ”)—(——e——e—e) (74)
00 € 2 4 2 4

is the wave number of the 0,0 transition (v’ = v”” = 0). Equation (73), however gives
the wave number of the v’, v”” transition. The second anharmonic corrections w,y,
have been disregarded.

The wave numbers of the zero lines of the individual bands can generally be found
only by rotational analysis. If no such analysis has been carried out, the band heads
are used for a preliminary vibrational analysis.

The purpose of the vibrational analysis is to arrange all the observed bands
(represented by their zero gaps or by their heads) into a scheme from which the v’
and v values for each band can be found. The scheme of band heads (also called

Deslandres table) for the emission spectrum of PN at 2500 A is shown in Table 4.

Table 4. Band head scheme of the emission spectrum of PN at 2500 A (after

Herzberg?).

v,\V 0 Diff. 1 Diff. 2 Diff. 3 Diff. 4

0 39698.8|1322.3 [ 38376.5/1307.8 | 37068.7

Diff.| 1087.4 1090.7 1086.8

1 40786.2(1319.0 | 39467.2{1311.7 | 38155.5(1294.2 | 36861.3

Diff.| 1072.9 1069.0 1071.6

2 41859.1{1322.9 | 40536.2 37932.9(1280.4 | 36652.5
Diff. 1061.2 1060.0
3 41597.4/1309.1 | 40288.3 377125
Diff. 1042.9 1043.9
4 41331.2 38756.4

For the rows of this scheme v’ is constant and v’ increases from left to right, while
in the columns v’ is constant and v’ increases from top to bottom.

The bands in a given row form a v’ progression, the wave numbers of which, according
to equation (73), are given by
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—_ _ .9y 3.9 32 ,
v =, — [wiv WIXV2]
where (75a)
—_ YO LI ] 2
Vo = vt Wiy WXV
In these v progressions, the bands proceed toward longer wave lengths (lower
frequencies) with increasing v”, and the distance between bands decreases slightly.

The columns in Table 4 are called v’ progressions, for which v” is constant. In
analogy to equation (75a), it is found from equation (73) that

V= v+ [wlV - WX v?]

where (75b)

Vo = Voo — WV WXV
In the v’ progressions the bands proceed towards shorter wave lengths (higher
frequencies) with increasing v, and the distance between bands again decreases
slightly.

S
In favourable cases, progressions of these types can be found fairly readily in the
spectrum. The v progressions for the emission spectrum of N » are marked on
horizontal lines in the lower part of Fig. 6, although in this case the sequences with
Av =V’ —v” = constant are more obvious.

The correct arrangement of all the bands in a band-head scheme can generally be
found only by trial and error. A useful check for the correctness of such an
assignment is that the differences between the numbers in two adjacent columns
must be all the same; this is also the case for the differences between two

successive rows"). These differences are also shown in Table 4. Thus, for the first
and second columns of the band head scheme, according to equation (75b), we have

V= v+ [wlv - wlx v, (75¢)

<
1}

vin Wy — wlxv?], (754d)

*) Stricly only for the zero gaps, but to a good approximation also for the band heads.
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T

i.e. for the difference, irrespective of v’,

- — - - . ’” 9
e R I N Ry wyxY)

= W) - WX} = AGp,, (75¢)

When a correct band head scheme has been established in this way, it generally gives
only the relative numbering in v’ and v”; so the true values of v’ and v’ may differ
by an additive constant from the values assumed in the scheme; and to determine
the absolute numbering, it is necessary to consider the intensity distribution over
the various bands and the temperature-dependence of this distribution (see

Chapter 6).

If the same band system can be obtained for two isotopic molecules, the absolute
numbering can be determined with the aid of the vibrational isotope effect. It was
mentioned in Section 3.2 that the equilibrium conformations of two isotopic
molecules agree to a very close approximation. More precisely, two such molecules
have the same potential energy function V(R). In such a case not only are the
positions of the potential energy minima (which determine the equilibrium
configuration) identical, but the curvature of the potential energy curves at the
minima (which determine the force constants according to equation (25)), are

also the same. Thus two isotopic molecules, e.g. 19B160 and 1!B!6Q have the same
force constant and differ only in their reduced masses. From equations (29a) and
(29b), therefore, the ratio of their vibration frequencies is

v; W \/ﬁ
= —= L—4=p<1. ) (76)

]
14 w i

The heavier isotope (index i) thus has the lower vibrational frequency. The wave
number

v, = [V'R}) - V” (R))]/he

is also the same in the two cases. In the harmonic-oscillator approximation, therefore,
the wave numbers of corresponding bands of two isotopic molecules are given by

1 1
V=, + w, (v’ + E) - W) (v” + 5) (76a)

1 1
v, =y, t+ pw;(v’ + 5) - pwy (v” + 5) , (76b)
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e The procedure followed in practice is therefore:
i e =p (77) ‘ 1. Relative vibrational analysis.
VT Pe - 4 - 9. Rotational analysis (see Section 5.2) to determine the wave numbers of the zero

lines of all the bands and the rotational constants B’, and B”,.

3. Use of the vibrational isotope effect to determine the absolute numbering of the
vibrational structure of the spectrum. This step may be omitted if the numbering is
obtainable from the spectrum itself.

4. Determination of the vibrational constants ’,, w”,, W' X', W” X", from the
constant differences in the zero gap-scheme {cf. equation (75¢)].

This equation is also valid to a good approximation when the anharmonic terms in
equation (73) are taken into account. Thus the whole band system of the heavier
isotope is contracted by a factor p in relation to the whole band system of the :
lighter isotope, when both are measured from the wave number of the pure electronic
transition. This is shown in Fig. 23, where the position of the pure electronic transi- -
tion, which does not itself appear as a band in the spectrun, can be found extraola- '/
tion, and corresponding bands of the two isotopes can thus be found. The absolute

numbering can the be determined from equations (76a) and (76b). 5.2. Retational structure of electronic transitions

1 \ L l l We now consider the rotational lines of a given band, i.e. of a given v’, v’ transition.
! The sum of the first two terms in equation (70) is then a constant, so that

\ [ / l/ ” D= Oy ¥ Bae) F v = 8+ PO - F7 O (8)

\ , / / / / - As in the rotation-vibration spectrum, an R branch is obtained for A} =J = J” = +1,

0, 010 20 30 40 v

with the wave numbers

v=RU) =v, + PJ + 1) - F(J)=v, +2B, + (3B, - B)J

+ (B, - BRI J=1"=0,12... (79a)
and a P branch for AJ = J ~ J” = -1:

v=P0)=v, + FJ-1)-F(J)=v,— (B, +B)I

+ (B - BNIZ, T=J"=1,2,... (79b)
Fig. 23. Schematic representation of the vibrational isotope effect for two isotopic diatomic
molecules. Top: band system of the lighter molecule; bottom: band system of the heavier . For certain electronic transitions (Cf Chapter 7) there is also a Q branch with
molecule. Yp = position of the pure electronic transition (extrapolated). The figures give the . ” . ’ ’
(v’,v’’) numbering of the bands. Al=y- 7= 0’ for which

<
1]

QW =v, + ) -F"(J) =vp, + (B, - B))J + (B, — B))J2,

However, this procedure is based on the assumption that the zero lines of the =012 .. (79)

various bands are used for the wave numbers in equation (77). If the wave numbers

of the band heads are used instead, a rotational isotope effect may be superimposed
on the vibrational isotope effect (cf. Section 5.2), with the result that the evaluation
becomes more difficult. v=v,+ (B, +B)m + (B, - B)) m?2, (30)

As before, the P and R branches can be represented by a single formula
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where the quantum number m is given by

J+1 R-
m = for the branch (81)

It is useful to compare the equations of this section for the rotational structure of
electronic transitions with the equations (48) to (51) for the rotation-vibration
spectrum. They are very similar, but differ in the following respects:

1. In equation (48), the quantity v, is the wave number V,ipe Of the pure vibrational
transition around which the band is built up. In the electronic transitions, on the
other hand, according to equation (78), v, is the wave number of the “vibronic”
transition, i.e. the sum of the pure electronic transition v, and the vibrational
transition v,;,. . The extra additive term v, displaces the band from the IR into the
visible region.

2. For certain electronic transitions a Q branch can also occur. The electronic
transitions for which this is the case are described in Chapter 7.

3. In the rotation-vibration spectrum, the constants occurring in the term formulae
belong to the same electronic state, namely the ground state of the molecule. The
vibrational constants for the upper and lower states of the transition are identical,
and the rotational constants in the upper and lower states differ only in their slight
dependence on v [cf. equation (46)]. In the electronic transitions, on the other
hand, the vibrational constants of the upper and lower states belong to two
different electronic states and may therefore differ appreciably. The rotational
constants of the upper and lower states can now differ widely owing to differences
in the values of B, and a, in the two states; in particular, B’, > B”, is possible as
well as B’, <B”,. This leads to the formation of band heads in one of the three
rotational branches.

Equation (80) is a second-order polynomial in the quantum number m. If m is
regarded for the present as a continuously variable quantity, and if the first
derivative dv/dm is set equal to zero, then

B, + B}

m = 82a
head 2(B:, _ B:,) ( )

RCEE:Y;

= ) 82b
4(B, - B) (820)

Vhead ~ Yo

5.2. Rotational structure of electronic transitions 57
- l’llml
Equation (82a) will not generally give an integral value for m. The true¥is then at the
nearest integral value of m. A plot of equation (80) taking into account equation
(81) (J is plotted against v) gives two parabolic sections for the P and R branches.

J
R-2weig

%

Fig. 24. Fortrat parabolas for a - [I-2 transition.

This is shown in Fig. 24 for a [I-Z electronic transition. The Q branch — if occurs —
can also be plotted in the same diagram. The resulting Fortrat parabolas are displayed
in Figs. 25 and 26 for the two cases (a) B’,> B”, and (b) B, <B.

According to equation (82a), m; .4 18 negative in case (a), i.e. the head lies in the P
branch, and according to equation (82b) on the long-wavelength side of v,,. Such a
band is described as being shaded towards the violet.

In case (b), My.,q is positive, i.e. the head lies in the R branch, and according to
€quation (82b) on the short-wave side of v, . Such a band is said to be shaded
towards the red.
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Fig. 25. Fortrat parabolas (schematic) for B’, >B"V. J = rotational quantum number.
Fig. 26. Fortrat parabolas (schematic) for B’y <B”y. J = rotational quantum number.

A true band head cannot occur in the Q branch, since differentiation of equation
(79¢) with respect to J leads to the condition

(B, -B)(1+2)=0

and the resulting values J = —1/2 does not occur in the Q branch. However, if

B’,~ B”,, then B’, — B”, is small, and the Q branch starts almost perpendicular to
the frequency axis, so giving the appearance of a Q head. Consequently, bands with
Q branches often appear to be double-headed®). It can also be seen from equation
(82b) that the distance of the head from the zero line increases as the denominator
B’, — B”, decreases. Thus the shading of the bands of an electronic transition can
provide the first indication of the relative positions of the potential energy curves
of the two electronic states involved. Since B, > a,, the sign of B’, — B”, is generally
the same as that of B’, — B”,. Thus for a band system shaded towards the violet,
B’, > B”, and, since B, ~ l/Rg, R’, <R”,, in this case, therefore, the minimum
of the upper curve occurs at smaller R values than that of the lower curve. The
situation is precisely the reverse for bands shaded towards the red. If however

B’, = B”,, the shading may not be the same for.all the bands in the system, i.e. it
may be reversed within the system. This happens when the B, curves have the form
shown in Fig. 27.

Rotational analysis of the bands of a band system (electronic transition) could also
be carried out by the procedure described in Section 4.2 for the rotation-vibration

*) This is the case in the AIH band of Fig. 7.
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v

Fig. 27. Curves of B’, and B, for band systems in which the shading reverses.

spectrum, i.e. by matching the wave numbers of all the lines with the theoretical

. expressions [equations (79a) to (79¢)]. In practice, however, a more systematic

analysis using combination differences is preferred, since that gives more accurate
values for the rotational constants. As can be seen directly from Fig. 28, the
combination difference

A, FO=RO-PO=EJ+1)-Fd-1
1o (83)
= 4BV(J +E)

between two rotational lines having the same lower level J”” = J is equal to the
distance between the rotational terms I’ =J + 1 and J" = J - 1 in the upper electronic
state. For a given J, this difference has the same value tor different lower vibrational
states, as is illustrated by the left-hand and right-hand sides of Fig. 28. Note that
this is true even when the rotational lines can no longer be represented by equations
(79a) to (79¢), i.e. when the D terms in the rotational terms are no longer negligible
or when the formulae are invalid for any other reason (rotational perturbations).
Only the expression on the extreme right of equation (83) assumes the validity of
equations (79a) to (79¢).

The distances between the rotatidnal levels J” =J + 1 and J”’ = J — 1 in the lower
State can be obtained from the combination difference

AFPM)=RI-1)-PA+1)=FJd+)-FEdJd-1
)
= 4B7{J + -
2
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Fig. 28. Diagram illustrating the.combination differences of equation (83). J = rotational
quantum number, v = vibrational quantum number, AG” = distance between two vibrational
levels v} and v in the lower electronic state.

The two series of rotational terms F’(3°) and F” (J”*) can be separated from one
another by the use of the combination differences (83) and (84). A plot of A,F
against J then gives a straight line of slope 4B, passing through the point (0, -1/2).
This graphical method averages out experimental (non-systematic) errors in the
measurement of the wave numbers. Moreover, the rotational analyses of various
V', v’ bands of the same electronic transition can be fitted together. Thus for two
bands having the same v’, but different v’ the combination difference A,F’ must be
the same, as has already been mentioned. For further details, such as the inclusion
of the D terms, the combination differences for bands having Q branches, and the
determination of the zero lines from the combination differences, the reader is
referred to reference?:

Before a rotational analysis using combination differences can be carried out,
however, it is essential that the correct J numbering should be known. If the band

is not completely resolved, if the zero gap is not clearly recognizable, or if rotational
lines of different branches approximately coincide, the correct numbering must be
deduced from those parts of the band that are well resolved. Another method for
the determination of the absolute J numbering makes use of the rotational isotope
effect. From the definition (8c) of the rotational constant B, it follows by equation
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(76) that
Bi/B, = M/M, = p? (85)

It can also be shown that.ai = pia, and Di = p®D,. A little calculation shows that to
a good approximation

l)li'ot/vrot = p2 * (86)

Thus all the rotational lines of the heavy isotope are contracted by a factor of p2
relative to the corresponding lines of the lighter isotope. It should be noted,
however, that according to equation (78), the wave numbers v, of the rotational
lines in both cases must be measured from the corresponding zero lines v,, which
are different for the two isotopes because of the vibrational isotope effect (cf.
Section 5.1).

5.3. Potential energy curves of diatomic molecules

We were introduced to the concept of a potential energy curve in section 4.1, where
some mention was also made of the different types of potential energy curves and
their general form. In the present section we shall deal rather more fully with the
potential energy curves of diatomic molecules. The general course of the potential
energy curve for a stable electronic state is shown in Fig. 13. The curve has a
minimum at R = R.. It rises steeply for smaller R values, and - because of the last
term in equation (24)-it tends towards + © as R — O. Thus within this range the
two atoms of the molecule repel each other. The curve also rises when the R

values exceed R,, but the rise in this case is less rapid and the curve tends towards a
finite value for R — oo, the tangent then being horizontal; in this range the atoms
attract each other. The difference

D, = V(«) - V(R,)
is the dissociation energy of the molecule, referred to the potential energy minimum.
However the energy required for the reaction

AB — A + B
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in the gas phase is given by the distance D, from the lowest level v = 0 to the
dissociation limit. It is clear that

D, = D, - G(0),

(o]

where the zero-point energy G(0) is given by equation (41) (cf. Fig. 29).
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Fig. 29. Potential energy curve with vibrational levels, the dissociation limit V<°°>, and the
subsequent continuum. R = internuclear distance, R = equilibrium distance, v = vibrational
quantum number, D and D, = dissociation energies, G(0) = zero-point energy.

In principle, the Schrodinger equation (31) can also be solved for this potential
energy function V(R) instead of the harmonic approximation of equation (25). The
result is again a series of discrete vibrational levels E,, which converge to the
dissociation limit V(). Above the dissociation limit there is no discrete vibrational
energy; the motion of the two atoms relative to one another is no longer

quantized, and all energies above V(=) are also quantum-mechanically possible. A

motion of this nature, as illustrated by the horizontal line ab in Fig. 29, corresponds
to a collision between the two atoms. Starting from the point a in the diagram, the

atoms approach each other until they reach the classical turning point (point b in
the diagram), where they come momentarily to rest, only to move apart again along
the line from b 70a. Whether the number of discrete vibrational levels in the poten-
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tial energy trough of Fig. 29 is finite or infinite depends on the behaviour of V (R)

" at large values of R. If the molecule AB dissociates into neutral atoms as R

approaches o, the potential energy curve approaches its dissociation limit very
rapidly, actually exponentially. In this case (which is by far the more frequent), only
a finite number of vibrational levels can be contained in the potential energy trough.

If on the other hand the molecule dissociates into ions in accordance with
AB— At + B or A +B*

the curve approaches the dissociation limit much more slowly, the attraction being

proportional to 1/R, corresponding to the Coulomb attraction of the ionised atoms

of opposite charges. In this case there is an infinite number of discrete vibrational

levels in the potential energy trough®. These converge on the dissociation limit
which is now a true accumulation point.

RN

AGwa

Fig. 30. General behaviour of AGV .kl—(distance between adjacent vibrational levels) for the
dissociation of a diatomic molecule ifito neutral atoms. v = vibrational quantum number.

It is easy to decide which of these two cases occurs by plotting the experimental
differences AG, , ! of equation (44a) against (v + %). This gives the curves of Figs.
30 and 31. The bfoken lines show the behaviour of AG, + % for the case in which
this quantity can be described with sufficient accuracy for all values of v by

*) At large values of R, van der Waals forces are superimposed on these valency forces, but the

former vary as 1/R6; so they do not affect the above classification, since the change from an infinite

to a finite number of vibrational levels occurs for large R if V (R) & 1/R2,
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Fig. 31. General behaviour of AGV +% for the dissociation of a diatomic molecule into ions.
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Fig. 3.2. Graphic representation of the Birge-Sponer extrapolation for dissociation energies. vy =
last vibrational quantum number.

equation (44a) (cf. Fig. 32). When this expression is equated to zero, the intersection
of the straight line with the axis is found to be

w, 1

v, =
2wX, 2

>

where v . is the last v value before the dissociation limit.

The dissociation energy D,, referred to the lowest vibrational level v = 0 (cf. Fig.
29), is then obviously

D, =% 4G, +.
= +—.
° v=0 Gv 2
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This quantity is equal to the area under the step-curve of Fig. 32, and also equal
to the area under the broken line. The area under the broken line is

1 1 w? -
D =— - W -lv + —] = .
° 17 4w X, (®7)

Since the curves in Figs. 30 and 31 deviate downward and upward, respectively,
from this line, equation (87) gives only an approximate value for the dissociation
energy in these cases, namely too high a value in the first case and too low a value
in the second. This linear extrapolation is known as the Birge-Sponer extrapolation.

More accurate values for the dissociation energy D, are obtained if the vibrational
distances AG+ 2 are known up to the dissocitation limit. In this case the continuous
curves of Figs. 36 and 31 are used instead of the Birge-Sponer line. The area under
these curves then gives a good approximation to the dissociation energy, as can be
shown by a method similar to that used in the case of the straight line. To obtain the
dissociation energy D, referred to the minimum of the potential energy curve, the
zero-point energy of equation (41) must be added to D, (see Fig. 29). Determination
of dissociation energies has been discussed in detail by Gaydon®).

The procedure just described for determination of the dissociation energy involves
only quantities that can be determined experimentally, namely, the vibrational
spacings AG, .1, and does not require prior knowledge of the true potential
function V(R).ZHowever it must be clearly understood that there is strictly speaking
no such thing as an experimentally determinable potential energy function. What
can be measured is merely the distances AG, ,1 between adjacent vibrational levels.
Even if these are accurately known right up to’the dissociation limit, they do not
determine the potential energy curve V(R) uniquely, i.e. there are several (generally
an infinite number) of potential functions for which the eigenvalues of the

vibrational Schrodinger equation are identical.

If the experimental differences between rotational levels are used as well as the
vibrational distances, an ‘“‘experimental” potential energy curve can be found by a
method known as the RKR (Rydberg, Klein, and Rees) method. This method

makes use of the semiclassical or WBK approximation to a solution of the Schré-

dinger equation for the vibrational and rotational motion of a diatomic molecule.

Many “experimental” potential energy curves have been calculated by this method

in the last few years. Unfortunately the accuracy of this method has not yet been
investigated Yiiroughly, so that it is not known how closely these potential energy thow.
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functions approximate to the true potential energy functions V(R). Owing

to this uncertainty, it is wiser not to compare the quantum-mechanical calculations
with experimental values at the level of potential functions V(R); it is better to
calculate theoretical vibrational levels from theoretically calculated potential
energy functions, and to use these vibrational levels to compare theory with
experiment.

Since thus no closed expression for the true potential functions V(R) is known,

one has to use empirioal relationships that exhibit qualitatively the correct behaviour
for R —> e, R~ R, and R —> O and yet still permit free choice of parameters.
These parameters are then selected for a given electronic state in such a way as to
give the best possible agreement of the experimental vibrational constants w,,

WeXe, D, , R, etc. with those found from the empirical relationship.

The best-known empirical relationship of this type is the Morse potential

V(R) =D, [1 - e 8B(R ~Re)?

2n2cM\ V2 /M,
f = ( “w, = 1.2177 x 107 w, ¥ — (ecm™1)
D,h D,

which contains three parameters (M, = reduced mass in atomic weight units). For
example, D, R, and w, may be matched to the experimental values, but the
anharmonicity correction w_ X, is then fixed by

= . R2

Wee 8n2cM B

and will usually not agree with the experimental value. To get the best possible
representation of the experimental vibrational terms, it is therefore better to match
the parameters R, w,, and w.x,; the value of D, is then fixed, but will usually
differ from the experimental value. Many other empirical relationships have therefore
been discussed in the literature, some containing more than three parameters which
permit better matching with the experimental data2-6), However, if a formula is to be
established relating the parameters in V(R) to the vibrational constants the Schré-
dinger equation must have a closed solution for this potential and this greatly
restsicts the freedom of choice of empirical V (R).
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6. Intensities and Selection Rules
6.1. General

The intensity of a given transition is determined by the total transition moment

R = N/’ M Kl/” dT. (88)

In this expression, Y’ and " are the total wave functions of the upper and the

lower state between which the transition takes place. For dipole transitions, which are
by far the most common transitions, M is the operator of the dipole-moment

vector, which consists of an electronic and a nuclear component, as follows:

M = Me + Mk (89)

According to the Born-Oppenheimer approximation (see p. 14), the y-functions
can be written in the product form (5a)

Y = wel : (lpv : ‘ljrot) = ‘pe| : ‘pk (90)

Insertion of (89) and (90) into equation (88) then gives
R = [Uiupdn [UuMeyndry + SUMSUdn fYaygdre 1)

a) For rotational-vibrational transitions, the electronic state remains unchanged,
so that Y, = Y} = Vg The last integral in equation (91) then becomes the
normalization integral for the single electronic function y,,, the value of which,
by analogy with equation (32), is unity. The transition moment of equation (19)
then takes the form

R = [y (MK + [IY,|2Medr)dr, = U MR)Ydr. 92)

Here M(R) is the vector of the dipole moment of the molecule in its electronic
ground state, the dipole moment itself being the sum of a nuclear and an electronic
component. The nuclear component is simply the dipole moment of the atomic
nuclei a, which are regarded as point charges Z; (nuclear charges); the electronic
component is the dipole moment of the continuously distributed electron density
for the ground state of the molecule. Both components depend on the relative
positions of the nuclei, as is indicated in equation (92) by the argument R.
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b) For electronic transitions, the last integral in equation (91) disappears because
of the orthogonality of the wave functions ¥, and Yz Which are now different.
Equation (91) therefore simplifies to

R = JUbi [ JVaMe¥eidry | dry = [YM(R)Ydr, . 93)

In this equation, M(R) is the electronic transition moment, which is given by the
inner integral in the first part of equation (93). This quantity again depends (via
the wave functions) on the relative positions of the nuclei.

It can be seen that the total transition moment has the same form in both cases,
namely, an integral over the product of the nuclear wave functions in the upper and
the lower state and a moment vector M(R). The only difference is the explicit form
of this vector. For rotational-vibrational transitions, it is the electric dipole moment
of the molecule, while for electronic transitions it is the electronic transition
moment. In both cases this moment has a fixed orientation with respect to the
molecule-fixed axes x, y, z (z being the axis of the molecule), so that its space-fixed
components have the form

M), = M) - f,, i=XYZ (94)

Here M(R) is the magnitude of the moment, i.e. a scalar quantity. The second factor
f; depends on the orientation of the molecule-fixed axes with respect to the space-
fixed axes. For example, if the moment lies along the axis of the molecule (only
M(R), # 0), the f; in equation (94) are simply the direction cosines of the molecule-
fixed z-axis with respect to the space-fixed axes x, Y, Z, i.e. in this case

fx = sind - cosp, fy = sind - siny, f; = cosd, (95)

where ¥ and ¢ are the polar angles of the figure axis. The rotational bands

occurring in this case are called parallel bands. If the moment is perpendicular to /- \
the hold figure axis (perpendicular bands), other simple equations'instead of il
equation (95). Finally, if the moment has components parallel to and perpendicular

to the figure axis (hybrid bands), the total transition moment (93) can be represented
by a linear combination of the simpler cases described above.

In any case, (94) leads to a further simplification of equation (93) if the nuclear
wave functions are resolved in accordance with equation (90) into their vibrational
and rotational components
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(96)

Ri ,= Iw;Mgg)w\:’dwar ) N/r’otfi w;;,t,drrot’ i= X’Y’Z\

—_— -

component, which is independent of the index i, and a rotational component.

"
6.2. Selection rules for rotational and rotational-vibrational transitions + St Ube

To evaluate the vibrational component of equation (96), we expand the magnitude
of the dipole moment as a function of the relative positions of the nuclei around
the equilibrium positions. For diatomic molecules, in which the internuclear
distance R is the only relative nuclear coordinate, this expansion has the form

. M
M(R) = M(R,) + (—) -R-R) + ... *7)
dR /e
Insertion of this expansion into the first factor of equation (96) gives:

dM .
M(Re) : fw:r\p\,r,dTvibr + (E) : f\[/‘; (R - Re) wv dTvibr .. (")

e

In pure rotational transitions, the molecule is in the vibrationless ground state in

both the upper and the lower state i.e. Y. = ¢, = {_. The second integral in the
expression (98) then is equal to zero on symmetry grounds, while the first becomes
the normalization integral of the vibrational eigenfunction for v = 0, which has
value 1 according to equation (32). Thus the only part of the expression (98) t%lé‘lt
remains is the factor M(R, ), and the space-fixed components of the total transition
moment (96) become

Ri = M(Re) : fll/;otfi wl":)throt to i= X’Y’Z' (”)

The intensity of the transition is proportional to R2y + R2y + R2, (cf. Section
6.5); thus if the transition is to have a finite intensity, at least one of the three
components of equation (99) must be different from zero. This requires that

1. M(R,) # 0. This is Part 1 of the selection rules of equations (9) and (9°).
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2. At least one of the integrals in equation (99) must be different from zero. This
reflects Part 2 of the selection rules of equations (9) and (9°); however, we shall not
deduce this explicitly, since we did not derive the rotational eigenfunctions in
Chapter 3.

In later discussions we shall require the following distinction:

a) In linear, particularly diatomic, molecules the functions V,ot for the rotation
spectrum depend only on the quantum numbers J and M; [see equations (7a) and
(7b)],and the procedure described above gives the selection rules

b) In symmetric top molecules, the functions Vot for the rotation spectrum depend
on the quantum number K as well as on J and M;. If the permanent dipole moment

lies along the figure axis (4, # O, uy, = p, = 0), calculation of the integral in equation
(99), using the f; of equation (95), gives the selection rules (9’a) to (9c). -2

c) If the moment is perpendicular to the figure axis, one obtains instead (et iw
AJ = 0, ] 9d)
AK = %] , (%)

This case is rare in pure rotation spectra, but is found in rotation-vibration spectra
(see below).

d) For linear molecules, electronic transitions are governed by the selection rules
(9°a) to (9¢), K being replaced by the component A of the orbital angular momen-
tum of the electron along the internuclear axis.

The above derivation may be applied directly to polyatomic molecules, except that
the second term in equation (97) has to be replaced by a sum of expressions of this
form extending over all the normal coordinates, i.e.

oM :
M@Q,Q,...)=M®R) + ZQ (—) + ... (100)
i aQ) e
It is immediately obvious that on insertion of equation (100) into equation (96),
the only contribution is again from the first term, this contribution being the
expression in equation (99).
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In rotation-vibration spectra a vibrational trangtion takes place, so that the
vibrational eigenfunctions ¥, and Y’ in the fisrt integral of the expression (98)
belong to different vibrational states. However, they are then mutually orthogonal,
and this integral disappears. The second remaining term in the expression (98), when
inserted into equation (96), gives the total transition moment for rotational-
vibrational transitions:

(dM
i " ar
i=XYZ

Once again, at least one of the three components of equation (101) must be different
from zero if the transition is to have a finite intensity, i.e. if it is to be “allowed”.
Transitions that fail to satisfy the selection rules, i.e. in which all three components
of the total transition moment disappear, are known as forbidden transitions.
Transitions of this type have vanishingly small intensities in the approximation used
here. However such forbidden transitions can in fact occur in the spectrum but,
owing to their forbidden character, their intensities are much lower than those of
allowed transitions. For an allowed transition, therefore, the first factor in equation
(101) must be different from zero, i.e.

)e R R W il Vi

B onfl] o
— 0 or (— 0, (102)
drR /¢ aQi e

when the expansion (100) is used instead of equation (97) for polyatomic
molecules. This is the first part of the vibrational selection rules of equations (37)
and (64). The second factor in equation (101), which is independent of i = X, Y, Z,
must also be different from zero if the transition is to be allowed, i.e.

Sy (R=Re) - ¥idryy, # 0 or [y - QP Y dry, # 0. (103)

As can be deduced by insertion of the explicit form of the vibrational wave
functions of equation (34) or (63), this requirement gives the second part of the
vibrational selection rules of equations (37) and (64). If the wave functions of the
anharmonic oscillator are used in equation (103) instead of the functions of the
harmonic oscillator, the integral is found to differ from zero also for changes in the
vibrational quantum number Av =23 . .. ; however, its value generally decreases
rapidly with increase in Av. The ratio of the intensities of these overtones to that
of the fundamental vibration Av = 1 can also be calculated in this way. Finally, the
requirement that the third factor in equation (101) should be different from zero
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for at least one value of i leads to the same rotational selection rules as were
discussed above. Thus the rotational and vibrational selection rules are independent
in the approximation used here.

6.3. Selection rules in the Raman effect

The derivation of the selection rules for Raman transitions is very similar to that
given above for dipole transitions. However, it is more complicated than for the
IR spectrum, since the vector of the electric dipole moment is replaced by the
tensor of the electric polarizability a of the molecule. Nevertheless this tensor can
be transformed to principal axes so that only its diagonal elements a;,i=x,y,2

1
are involved. Moreover, for linear and symmetric top molecules, the two diagonal

elements perpendicular to the figure axis z are equal to one another (a,, = ay, =a nA

but different from the diagonal element a,, = aj- In this case the vector of equation
(94) is replaced by the ‘vector’

a;(R) = a) + (aj — a)) - f,(00)? i=XY,Z, (104)

where f; is given by equation (95). Insertion of this expression into the integral on
the extreme right of equation (93) gives

R, = [Yra ¥ dr,,, - SVt Vint 47,00 +

rot

(105)
+ fw\: (aH - a'l) llj\:’drvibr : fw;otf?w” dTrot :

rot

which is the equivalent of eq. (96).
For pure rotational Raman-transitions, V=Y =y »» and with the expansions

a (R)=a;(R) +aj(R,) - R~-R,)+...

(106)

UR) = aRy) + afjR) - R - R, + ...
equation (105) simplifies to

Ri =q (Re) ’ fw;ot w:;throt +

g R — ap RIT * S0 Y0047 ,01 5 (107)
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which is the equivalent of equation (99). Owing to the orthogonality of the
rotational wave functions, the first integral differs from zero only if J’ = J”.

Calculation of the second integral with the f; from equation (95) and the eigen-
functions of the rotator shows that this integral differs from zero only if

AJ =J = J” = £2; the first integral disappears on grounds of orthogonality. The
expression in square brackets before the second integral must also be different'
from zero in this case; in other words, the polarizabilities parallel and perpendicular
to the axis of the molecule must be different. These are exactly the selection rules
given in equation (19) and used in the subsequent text for rotational Raman.spectra.
Molecules such as CH,, i.e. spherical tops with three equal moments of inertia, are
included here as special cases: in such cases all the polarizabilities must have t.he
same value on symmetry grounds, i.e. a| = ay, so that the bracketted expression
before the second integral in equation (107) vanishes; these molecules consequently
have no rotational Raman spectrum, as was menticned at the end of Section 3.3.

In the rotation-vibration Raman spectrum, ¥, and .’ are different vibrational
eigenfunctions, which are ortljogonal to one an other. Consequently, insertion of
the expansions (106) leads to the following simplification of equation (105).

R, = [, (R = R Wdr ~ { LR~ [Uiorlinedroo +

Al (R = a (RY] - S f2U A7, }- (108)

This equation is the analogue of equation (101). Since equation (108) is the product
of a vibrational and a rotational integral, the vibrational and rotational selection rules
are again independent. Moreover, the rotational integrals occurring in (108) are the
same as in equation (107). We therefore obtain the same rotational selection rules
AJ=0, £2.

The vibrational integral is the same as in equation (101) for the IR spectrum. The
vibrational selection rules are thus also the same, namely, Av = +1. F inally, the
factors before the integrals must differ from zero, i.e. the polarizabilities parallel
to and perpendicular to the figure axis must change during the vibration. We have
thus deduced all the selection rules of equation (54).
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6.4. Selection rules for electronic transitions

We again return to equation (96), in which the quantity M(R) in the first integral

is now the magnitude of the electronic transition moment. The second integral over
the rotational wave functions is the same as for the rotation-vibration spectrum,
which was discussed in detail in Section 6.2. The selection rules for the rotational
quantum number J are thus the same as for the rotation vibration spectrum, i.e.

AJ = 0, 1 T
Y, Sl
for electronic transitions with AA = 0, 1. According to equation (9¢c), the
possibility AJ = O does not occur when A’ = A” = 0. This also defines the transitions
for which there is a Q branch and those for which there is no Q branch. The
significance of the electronic quantum number A will be explained more fully in
Chapter 7, in connection with the classification of the electronic states of diatomic

molecules.

In the first factor of equation (96), we expand the magnitude of the transition moment,
as in equation (97), as a function of the positions of the nuclei around the
equilibrium position of that electronic state from which the transition takes place.
This is the lower state for absorption spectra and the upper state for emission
spectra. We again obtain the expression 998).

We shall first assume that the quantity M(R, ), i.e. the magnitude of the transition
moment, is different from zero for the equilibrium conformation of the initial state. -
Electronic transitions for which this is true are said to be allowed. The electronic
transitions that are allowed in this sense will be discussed in Chapter 7. Here we
simply note that the requirement M(R,) # O again leads to selection rules, these
rules applying to the “electronic” quantum numbers; we already know one of

these rules for the quantum number A.

These electronic selection rules define those transitions of a molecule that are
allowed as pure electronic transitions. For polyatomic molecules, there are also
transitions that are forbidden as pure electronic transitions M(R,) = 0], but are
allowed as a result of non-totally symmetric vibrations. The electronic transition
moment for such transitions is M(R,) = 0, but the ““vibronic” transition moment
[the first integral in equation (96)] is different from zero. Which electronic
transitions these are and which normal vibrations make them allowed can be
deduced from the symmetry of the molecule alone, i.e. by the methods of group

theory®.
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ms n,led?anism is not possible in diatomic molecules, since the only normal
vibration is totally symmetric (cf. Section 4.4). However, there are other mechanisms

by which certain electronically forbi iti
y forbidden transitions i
with low intensities2). cai occur in the spectrum

For allowed electronic transitions, therefore
zero. If the expansion (97) for the magnitud:e
reasonable, the second term in the expression

first, so i
e ;Itl (;:}112 ?Eslziil;;te? E;)Sa) good approximation. In the discussion of the
; o , it must be noted that the vi i
» M VIb .
\m Jn{zﬂvlz:;c;ivo?&w belong to dl'fferent electronic states ¥, and x[/r’e:t:::ial Wat"}f oions
20 longs value:gofn;l. Even in the harmonic oscillator prroxh::ationa;; e
of both R, and a [see equation (34)]. ey have

the first term in (98) is different from
of the transition moment is at all

(98) must be small compared with the
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of the total transiti

ety szraf:{t;ori r}r;(;ment. Frf)m equation (96), therefore, we construct th

magnotie g }{lumbez a]\j[l’d snnul’faneously surix over the possible values oi’ th

becunes it e numb 1s My and M [cf. equation (7b)]. This is necess )
Ce of an external magnetic field, states with different ;Iry

degenerate wi
with one another. A somewhat lengthy derivation then gives e

zz
v R+ RS+ R2) = | 102 M Ry Tn
o D = LM®W G, |2 - s J/’: (109)
The S factor (the Hénl-London facto
procedure described above (summati
components X, Y, and Z) affects onl
these operations have been carried o
of equation (109), which naturally

1) in this equation arises as follows. The

on over all M’y and M} and over the three

y the second factor of equation (96). When all
a;lst(; :ihe square of this factor gives the § factor
of the upper g tatn Y epends on the quantum numbers J and A

- the se i
it is formed, the S factor differs from zer(: (())Irll;lyf:ftor s duation (56)

[equations (9°a) to (9%¢)] are satisfied.

The first factor in equation
Nlow appears in equation (10

band strength Py , while
line strength,

SG)Thls affecte.d by this procedure only in that its square
the. w }:s 1quantlty a.lso has a special name; it is known as the
0le expression of equation ( 109) is known as the
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According to the above discussion, the band strength for an allowed electronic
transition may be expressed in the simple form

Vv = |M(R ) |2 |f¢ ‘V’dT | M(Re) I2 ’ qv’v” (110)
where the square of the vibrational integral, i.e. the quantity g~ , is known as the
Franck-Condon factor.

As the final result of these rather tedious transformacdions, we have obtained in
equations (109) and (110) an expression for the square of the total transition
moment, that can be interpreted very easily. This quantity is a product of three
factors, corresponding to the three forms of motion in a molecule. The first factor,
the square of the electronic transition moment in the equilibrium configuration,
gives a measure of the total intensity of the electronic transition. This is distributed
over the various v, v” transitions in accordance with the Franck-Condon factor. In
each transition, i.e. in each band, the intensity is again distributed over the various
rotational lines in accordance with the Honl-London factor. If, for example, one is
interested in the relative intensity distribution of the lines in a band, one need only
examine the S-factor since the band strength p,.... is constant for this one band. On
the other hand, to examine the distribution of relative intensity over the various
vibrational transitions, one need only consider the vanous Franck-Condon factors
for these vibrational transitions.

r'he intensity of a rotational line depends, not only on the line strength [equation
(109)], but also on the number of molecules in the initial state (N’ 3 or Ny) and on
the wave number v of the transition. For emission spectra we have?):

I, =C

em

em " Ny 0% qun - SUNLI@P + 1) (111a)

and correspondingly for absorption spectra

Iabs = Cabs : N}, v qv’v” ' S}:(X;/(ZJ” + 1)- (lllb) '

Note the difference in the dependence on v (fourth power for emission and first
power for absorption). The constants C,, and C,, ; contain a pure numerical
factor and the square of the electronic transition moment in equation (110), which
has a fixed value for the entire electronic transition.
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6.5.1. Relative intensities in the rotational structure of electronic transitions

If the excitation conditions are such that the distribution of the molecules over the
various rotational states of the initial state corresponds to thermal equilibrium, we

have®):

B hc
Nj = const - (217 + 1) exp. {— 7“— Yy +1 } (112)
kT) fut i,

and similarly for Ny. The first factor (2J* + 1) apprears here because of the
degeneracy in Mj. The exponential factor is the well-known Boltzmann distribution.
To obtain an idea of how these occupancies depend on J’, we imagine for the
moment that J’ is a continuous variable and plot N} against J’. The two factors in
equation (112) change in opposite directions; while the first factor increases linearly
with J°, the second (exponential) factor decreases monotonically from unity. The
overall result is shown qualitatively in Fig. 33; the populations first increase with J°
to a maximum at

kT 1 /T(°K) 1
r. = - —= 05896 V ———— — —

max 2Bhc 2 Bj(cm™1) 2
and then fall off rapidly.
Ni
4 1 L 1 1 1 1 1 | 1 J:

Jna
Fig. 33. Relative variation of the rotational occupation number N’ J at thermal equlibrium
according to equation (112). J’ = rotational quantum number, J’;,,5 = value of J’ at maximum
(cf. text).

*) The constant is the reciprocal of the partition function and is therefore temperature-dependent.
However, this is of no importance to the relative values of N’y for a fixed T.
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For Z-2 transitions (i.e. transitions in which A’ = A” = 0, see Chapter 7), the
S-factors are

3” 1{r+1+1 P
S = { 0 = —{ 0 for the { Q —branch (113)
el 2P +1+ R

The ratios

S 1 F+JI7+1 S 1 P+ +1
1___=_.____—‘and..—-— —_——
2y +1 2 2y + 1 217 +1 2 277 + 1

B

are practically constant (particularly for the higher J values) and equal to 1/2, so
that the intensity of the lines in the P and R branches within a band is determined,
to a close approximation, by the product N}. »4 for emission and by Ny - » for
absorption. According to equation (78) however, the wave number » of the
rotational lines is the sum of the very large v | and the very much smaller v, ;.
Within a band, therefore, ¥ may be replaced with reasonable accuracy by the
constant quantity V,, so that the relative intensities of the lines in the P and R
branches are ultimately given only by the quantities Ny and N’ (cf. Fig. 33). For
the branch that does not form a head, this intensity distribution is evident merely

on inspection of the spectrum. In the branch that forms the head, on the other hand,
an intensity maximum is simulated by the convergence of the rotational lines in the

vicinity of the head (cf. the photometric curve in Fig. 7).

For other electronic transitions with AA =0 but A # 0 or with AA = %1, the
intensity distributions in the P and R branches are essentially the same as in the
2-Z transitions, except that there is also a Q branch. The precise intensity distribu-
tion can naturally be deduced in all these cases from equation (111) and the
corresponding expressions for the Honl-London factors, but this will not be
described in detail here (see reference?).

6.5.2. Relative intensities in the rotation-vibration spectrum
The distribution of the relative intensities of the lines in a rotation-vibration band is

very similar to that in an electronic band. This is because the rotational component
of equation (96) is the same in the two cases, as mentioned earlier. For linear
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molecules and parallel bands of symmetric top molecules, there is no Q branch, so
that the intensity distribution is similar to that in the Z-Z electronic transitions
described above. However, the wave number v in equation (111) is now equal to
Vyibr T Vrot (the large term v, is missing), so that the variation of the wave number
within a band is more extensive. On the whole, however, the distribution is that
shown in Fig. 33: what does change markedly is the appearance of the band, because
there is no longer a head as B’ ~ B”,..

6.5.3. Intensity distribution in the pure rotation spectrum

This can also be discussed or the basis of equation (111). In this case, however, the
quantity v=p,, is subjecd/Zery large variation, with the result that the intensity i
maximum is displaced gt higher J values. For details, the reader is referred to the Yo
appropriate chapter of reference?.

6.5.4. Relative intensities in the vibrational structure of electronic transitions

In accord with equation (11),these intensities are determined by the Franck-
Condon factor q,.,».Thus, in an electronic transition, the intensity of a band is
high when this factor is large, or, as commonly described, when there is good
overlap between the two vibrational wave functions. This is the wave-mechanical
Franck-Condon principle. Good overlap occurs if both wave functions assume
reasonably large values for the same argument; this is shown by the overlap integral

Ve =1 R - I® R (114)

the integrand of which depends on the product of the two wave functions.

This condition can also be demonstrated by insertion of the ¥, of Fig. 15 into the
potential energy curves of the two electronic states, as shown in Fig. 34. In the case
shown in the diagram, the minima of the two potential curves do not occur at the
same R (R’, > RY). The overlap between the two wave functions Y}, and y, of the
lowest vibrational level in each state is obviously very poor, since the value of one
function is small when that of the other is large, so that their product is small for all
values of R. The 0,0-transition in this case consequently has a very low intensity. The
situation is most favourable for that vibrational finction y’, (also shown) of the upper
A
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state, for which one of the two principal maxima (which are situated close to the
classical turning points of the vibrational motion, cf. Fig. 15) exactly coincides with
the single maximum of the vibrational function Y5, of the lower state. The overlap is
again small for vibrational levels of the upper state that lie appreciably above this
optimum level, since the corresponding ¥, oscillates strongly in the range in which
¥, has appreciable values, so that the integrand of equation (114) contains contribu-
tions with opposite signs, which largely cancel out.

P

e

_}__..____

Fig. 34. Vibrational functions of the upper and the lower state in an electronic transition.

What we have deduced here on the basis of Fig. 34 for the most intense transition

is the outcome of the classical Franck-Condon principle: The electron jump is so

fast that the geometry of the molecule and the relative velocities of the nuclei do not
change. It is easy to show that this requirement can be satisfied only if the transition
takes place in the perpendicular direction from a turning point of the lower vibrational
level to a turning point of the upper vibrational level. As our example shows,

however, this classical Franck-Condon principle'must be modified for transitions

from the vibrationless level, the middle of the vibrationless level being used instead

of the turning point. This follows naturally from the fact that Y7, assumes its
maximum value in the middle of the classically allowed range, where as the excited

vibrational functions have their principal maxima close to the classical turning
points (cf. Fig. 15). Apart from this modification, however, the classical Franck-
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Condon principle is very useful; it can be applied without difﬁcul_t)'/ alfso to '
electronic transitions of polyatomic molecules, for which an intuitive mt.erpretatlon
of the wave-mechanical Franck-Condon principle is no longer possible, since for
polyatomic molecules the potential energy curves of diatomic molecules are replaced
by potential surfaces in a higher-dimensional space.

The applicability of the classical Franck-Condon princ}ple can be ‘illustrat_ed by the
longest-wavelength absorption of the NH, radical. This molecule is bent in the .

ground state, but linear in the first excited state (see p. ff.). In the e‘lectronlc A
transition from the ground state, the molecule reaches the excited state in the

bent form since according to the classical Franck-Condon principle the nucle:.ar.

geometry should not change in an electronic transition (‘perpendicular’ transition).

However, since the equilibrium configuration of the molecule in the excited‘
electronic state is linear, the only vibrational transitions that should appear in the
absorption spectrum with appreciable intensities are thos‘.e in which so many quanta
of the bending vibration are excited in the upper electronic sta'te that the rrTolecule
assumes the bent geometry of the ground state even in the.excmtad electromc. state.
In fact, the absorption spectrum contains only transitions in which t'hfe bending
vibration w, (Fig. 19) is strongly excited (i.e. v} > 1); the 0,0-transition does not
appear in the spectrum at all (cf. Section 9.2).

The wave-mechanical Franck-Condon principle is preferable for a quaptitative
comparison of the relative intensities. The absorption intensities are given Ey
equation (111b) on summation over all the rotational quantum numbers J” of the
lower vibrational level v”’. This gives

Lys = const. * NU - v - poys. (115)
The occupation number N, of the lower vibrational levels at thermal equilibrium,
in analogy to equation (112), is given by™)

DhC (116)
kT

N = const. exp. —

In contrast to the distribution over the various rotational states, the population

*) The constant in this equation is the reciprocal of the partition function and t‘hus temperature-
dependent. However, this is of no importance to the relative values of N’y for fixed T.
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N”, of the vibrational levels decreases monotonically with increasing quantum
number v”’. The numerical value of the exponent is such that even the first
vibrational level v’ = 1 is practically unoccupied at room temperature (300 °K).
Calculation from equation (116) shows that the ratio N /N, for the H, molecule
has a value of 2.16 x 109, while the value for Cl, is 6.92 x 10°2. Thus in the latter
case, for every 100 molecules in the state v’ = 0, there are 7 in the first excited
vibrational state, and correspondingly fewer in the more highly excited vibrational
states. At room temperature, therefore, the transition takes place mainly from

the vibrationless level of the ground state to those levels of the excited state that
lie ‘perpendicularly’ above the former in the sense of the classical Franck-Condon
principle. However, the wave-mechanical Franck-Condon principle modifies this
result, since all the vibrational levels of the upper state whose turning points fall

in the vertical region of Fig. 34 bounded by the two turning points of Y”, occur
with appreciable intensities. If the left-hand branch of the potential energy curve
of the upper state is already very %*E‘é‘p in this region, a large number of v’ levels fall
within this region. This leads to long v’ progressions. On the other hand, if the two
potential energy curves lie practically one above the other (R’, ~ R”,), the only

ﬁ_é_!_‘lf T L

|
V876"
V -—————— ——
Fig. 35. Intensity distribution in absorption, as explained by the Franck-Condon principle. For
the left-hand curve, R’¢ = R”’¢; for the second curve, R’e > R”¢; and for the right-hand curve
R’¢ >R,
Ny
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band having an appreciable intensity is the 0,0-band, Finally, if the minimum of the
upper state occurs at a smaller R value than that of the ground state, the right-hand
turning point of the vibrational level of the upper state must be taken; however,
this case is encountered only infrequently, since it requires that the bonding in the
excited electronic state of such a molecule is stronger than that in the ground state.

The cases just discussed are shown in a simplified form in Fig. 35. In the third case
the potential energy curve of the upper state is situated so far to the right that.the '
Franck-Condon region even includes part of the continuous states above the dissocia-
tion limit. As can be seen from the schematic spectrum at the bottom, the v’ progres-
sion is followed by a dissociation continuum in which the molecule, dissociates into
separate atoms after having been excited into the upper state.

The situation is generally more complicated in emission spectra. If the excitation
conditions are such that the molecules in the excited state are in thermal equilibrium
with respect to the vibrational levels, the populations N’ are given by a relation
similar to equation (116). In this case, just as in absorption, only the lowest
vibrational level v’ = 0 will be appreciably occupied, and the reasoning given for the
absorption spectrum can be applied to the emission spectrum also.

If, on the other hand, the excitation is by electron impact or by light absorption
(fluorescence), the distribution of the molecules over the excited vibrational states
may differ considerably from the equilibrium distribution. In particular, it is quite
possible in this case for higher vibrational levels of the excited state also to be
appreciably occupied. If one considers the intensities,of all v’, v”’ transitions that

Fig. 36. The Franck-Condon parabola drawn in the head scheme of a band system. The relative
positions of the potential energy curves are assumed to be the same as in Fig. 37.
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I(:;:rcallg,Olthe::;1 thl;)se m}?sg intense in the band-head scheme (Table 4) lie close to a
a, the Franck-Condon parabola, which is shown in Fj i
, a , ig. 36. This means th
rfg;;;a:}cfflo\; :&e]istlggrcz ;ie twov dlevels to which strong transitions take place Thz::t
at the excited vibrational levels have tw turni i .
which perpendicular transitions can itferens oo oo
take place to generally diff; ”
shown in Fig. 37. The stron itions in Fj indicated by dere
: 7. gest transitions in Fig. 37 are indicated i
Fig. 36. These lie very close to the Franck-Condon parabola. Py dotsin

To summarize, the Franck-Condon principle is easy

and is a very useful aid to the interpretation of the s

atomic molecules. pectra of diatomic and poly-

O

ig. 37. Intensity distribution in émission, as explained by the Franck-Condon principle

to apply in its qualitative form,

7. Electronic States of Diatomic Molecules

So far we have introduced the difference v, = T’, — T”, in equation (70) only as an
abbreviation for the position of an electronic transition that was empirically
determined. We shall now try to classify the electronic terms T, of diatomic
molecules by the introduction of electronic quantum numbers.

However, owing to the complexity of the quantum-mechanical treatment of the
motion of several electrons in the field of the fixed nuclei, the elecfronic energy
cannot be expressed as an explicit function of the electronic quantum numbers
and the internuclear distance R, as was possible for rotational and vibrational
motion.

7.1. Electronic states and quantum numbers

The existence of the quantum number L of the total orbital angular momentum of
the electrons in an atom follows from its high symmetry, which is, in fact, that of a

~sphere. Diatomic (and linear polyatomic) molecules have only cylindrical symmetry.

Whereas rotations about any axis are possible for an atom rotation in a molecule of
this type is possible as a symmetry operation only around one axis namely the line
joining the nuclei. As quantum mechanical treatment shows, there is then no good
quantum number that corresponds to the total angular momentum L of the electrons;
only its component L,along the line joining the nuciei is quantized, the possible
values for this component being M; .

These different symmetries of atoms and molecules can be correlated by an
imaginary experiment. The molecule AB, with nuclear charges Z,and Z,,is
imagined to be formed from the united atom (cf. p. 36), with the nuclear charge

Z, + 7, , by separation of the charges to a distance R from each other, as illustrated
in Fig. 38. The united atom is assumed to be situated at the electrical centre

of gravity of the nuclear charges on the line joining the nuclei. To a first approxima-
tion, the perturbation potential V is that of an electric quadrupole which produces

® ) ° * —O— o
*Z. +Zb "(Za+Zbl +Z, -(Z.*Z,,) +Zu
Molecule = United atom + Perturbation v

Fig. 38. Formation of a diatomic molecule from the united atom. Z,Zy, = nuclear charges.



